¼«Á³³¦¤Ë¸ºß¤¹¤ë¿·¤¿¤Ê·Á¾õ¡Ö¥½¥Õ¥È¥»¥ë¡×¤¬È¯¸«¤µ¤ì¤ë¡¢Æ󼡸µ¤Ç¤Ï±Ô³Ñ¤ò2¸Ä»ý¤Á»°¼¡¸µ¤Ç¤Ï±Ô³Ñ¤ò»ý¤¿¤Ê¤¤·Á¾õ
¥Ö¥À¥Ú¥¹¥È¹©²Ê·ÐºÑÂç³Ø¤È¥ª¥Ã¥¯¥¹¥Õ¥©¡¼¥ÉÂç³Ø¤Î¸¦µæ¥Á¡¼¥à¤¬¼«Á³³¦¤Ë¸ºß¤¹¤ë¿·¤¿¤Ê·Á¾õ¥¯¥é¥¹¥¿¡ÖSoft cells(¥½¥Õ¥È¥»¥ë)¡×¤òȯ¸«¤·¤Þ¤·¤¿¡£¥½¥Õ¥È¥»¥ë¤Ï¡Ö¥¿¥Þ¥Í¥®¤ÎÃÇÌ̡סֶÚÁ¡°Ý¡×¡Ö¥ª¥¦¥à¥¬¥¤¤Î³Ì¤ÎÆ⦡פʤɿÍͤʾì½ê¤Ë¸ºß¤·¤Æ¤ª¤ê¡¢¡ÖÆ󼡸µ¶õ´Ö¤Ç¤Ï±Ô³Ñ¤ò2¸Ä»ý¤Á¡¢»°¼¡¸µ¶õ´Ö¤Ç¤Ï±Ô³Ñ¤ò»ý¤¿¤Ê¤¤¡×¤È¤¤¤¦ÆÃħ¤òÈ÷¤¨¤Æ¤¤¤Þ¤¹¡£
Soft cells and the geometry of seashells | PNAS Nexus | Oxford Academic
What Do Onion Skins and Zebra Strips Have in Common? New Geometric Shapes Identified by BME Mathematicians | BME central site
https://www.bme.hu/en/news/240910/bme-epk-research-soft-cells-discovery-publication
Mathematicians discover new universal class of shapes to explain complex biological forms | University of Oxford
https://www.ox.ac.uk/news/2024-09-12-mathematicians-discover-new-universal-class-shapes-explain-complex-biological-forms
¿ô³Ø¤ÎʬÌî¤Î1¤Ä¤Ë¡¢¡Ö¶õ´Ö¤ò·ä´Ö¤Ê¤¯Ëä¤á¤ë¿Þ·Á¡×¤Ë¤Ä¤¤¤Æ¸¦µæ¤¹¤ëʬÌ¤¢¤ê¤Þ¤¹¡£¤³¤ÎʬÌî¤Ç¤Ï°ìÈÌŪ¤Ë»°³Ñ·Á¤ä¿³Ñ·Á¤È¤¤¤Ã¤¿¡ÖľÀþ¤ÈÊ£¿ô¤Î±Ô³Ñ¤Ç¹½À®¤µ¤ì¤¿¿Þ·Á¡×¤¬¸¦µæÂоݤȤʤë¤Î¤Ç¤¹¤¬¡¢¤½¤ì¤é¤Î·Á¾õ¤Ï¼«Á³³¦¤Ç¤Ï¤¢¤Þ¤ê¸«¤é¤ì¤Þ¤»¤ó¡£
¸¦µæ¥Á¡¼¥à¤Ï¡¢¼«Á³³¦¤ÎʪÂΤ¬·ÁÀ®¤·¤Æ¤¤¤ë¡ÖľÀþ¤ä±Ô³Ñ¤Î¤Ê¤¤·Á¾õ¡×¤ò¿ô³ØŪ¤ËÀâÌÀ¤¹¤ëÊýË¡¤òÄɵڡ£¤½¤Î·ë²Ì¡¢¡Ö¥½¥Õ¥È¥»¥ë¡×¤È¸Æ¤Ð¤ì¤ë¿·¤¿¤Ê¿ô³ØŪ·Á¾õ¤Ë¤è¤Ã¤Æ¼«Á³³¦¤Î¿¤¯¤ÎʪÂΤ¬À®¤êΩ¤Ã¤Æ¤¤¤ë¤³¤È¤òÆͤ»ß¤á¤Þ¤·¤¿¡£
¥½¥Õ¥È¥»¥ë¤Ï¡¢Æ󼡸µ¶õ´Ö¤Ç¤Ï¡Ö2¤Ä¤Î³Ñ¤È¶ÊÀþ¤Ç¹½À®¤µ¤ì¤¿¿Þ·Á¡×¤È¤·¤Æɽ¸½¤µ¤ì¤Þ¤¹¡£¥½¥Õ¥È¥»¥ë¤Ë¤è¤Ã¤Æ¹½À®¤µ¤ì¤ë¥¿¥¤¥ë¹½Â¤¤ÎÎã¤Ï°Ê²¼¤ÎÄ̤ꡣ¾åÃʤ¬¡Ö»°³Ñ·Á¤Ë»÷¤¿¥½¥Õ¥È¥»¥ë¡×¡¢ÃæÃʤ¬¡Ö»Í³Ñ·Á¤Ë»÷¤¿¥½¥Õ¥È¥»¥ë¡×¡¢²¼Ãʤ¬¡ÖÏ»³Ñ·Á¤Ë»÷¤¿¥½¥Õ¥È¥»¥ë¡×¤Î¥¿¥¤¥ë¹½Â¤¤Ç¤¹¡£
¥½¥Õ¥È¥»¥ë¤¬¼«Á³³¦¤Ç¸½¤ì¤ëÎ㤬°Ê²¼¡£¡Ö²ÏÀî¡×¡Ö¥·¥Þ¥¦¥Þ¤Î¤·¤ÞÌÏÍ͡סֳ¤ÎÃÇÌ̡סÖÁôÎà¤ÎÀèü¤Î´ö²¿³Ø¥â¥Ç¥ë¡×¡Ö¶ÚÁ¡°Ý¡×¡Ö¥¿¥Þ¥Í¥®¤ÎÃÇÌ̡ס־®Çþ¡×¡Ö·ìµå¤ÎÃÇÌ̡פʤɤ˥½¥Õ¥È¥»¥ë¤¬´Ñ»¡¤µ¤ì¤Þ¤¹¡£¤Þ¤¿¡¢±¦Ã¼¤ÎÎó¤ÏÇò»æ¤È¤Ê¤Ã¤¿¿·¹ñΩ¶¥µ»¾ì¥Ç¥¶¥¤¥ó°Æ¤Îºî¼Ô¤Ç¤¢¤ë·úÃ۲ȤΥ¶¥Ï¡¦¥Ï¥Ç¥£¥É»á¤Î¥Ç¥¶¥¤¥ó¤Ë¤â¥½¥Õ¥È¥»¥ë¤¬¸½¤ì¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤Þ¤¹¡£
»°¼¡¸µ¶õ´Ö¤Ç¤Ï¥½¥Õ¥È¥»¥ë¤Ï¡Ö±Ô³Ñ¤ò1¤Ä¤â»ý¤¿¤Ê¤¤·Á¾õ¡×¤È¤·¤Æ¸½¤ì¤Þ¤¹¡£¸¦µæ¥Á¡¼¥à¤Ï»°¼¡¸µ¶õ´Ö¤Ë¤ª¤±¤ë¥½¥Õ¥È¥»¥ë¤ÎÎã¤È¤·¤Æ¥ª¥¦¥à¥¬¥¤¤Î³Ì¤òÄ󼨤·¤Æ¤¤¤Þ¤¹¡£
¸¦µæ¥Á¡¼¥à¤Î°ì°÷¤Ç¤¢¤ë¥¬¥Ü¡¼¥ë¡¦¥É¥â¥³¥·¥å¶µ¼ø¤Ï¡Ö¿¤¯¤Î¾ì¹ç¡¢¿·¤¿¤Ê´ö²¿³ØŪ¹½Â¤¤Î±þÍѲÄǽÀ¤Ïȯ¸«¤«¤éŤ¤Ç¯·î¤ò¤«¤±¤ÆÌÀ¤é¤«¤Ë¤Ê¤ê¤Þ¤¹¡£¥½¥Õ¥È¥»¥ë¤Ë´Ø¤·¤Æ¤Ï¿ô³ØŪÌäÂꡦÀ¸Êª³ØŪÌäÂꡦ·úÃÛ³ØŪÌäÂê¤Ë±þÍѤǤ¤ë¤³¤È¤¬¤¹¤Ç¤ËÌÀ¤é¤«¤Ë¤Ê¤Ã¤Æ¤¤¤Þ¤¹¤¬¡¢¤¤¤º¤ì¾¤ÎʬÌî¤Ç¤â²Ê³ØŪ¤ËÍÍѤǤ¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤ë²ÄǽÀ¤¬¤¢¤ê¤Þ¤¹¡×¤È½Ò¤Ù¤Æ¤¤¤Þ¤¹¡£¤Þ¤¿¡¢Æ±¤¸¤¯¸¦µæ¥Á¡¼¥à¤Î°ì°÷¤Ç¤¢¤ë¥¢¥é¥¤¥ó¡¦¥´¥ê¥¨¥ê¡¼¶µ¼ø¤Ï¡Ö¼«Á³¤Ï¿¿¶õ¤ò·ù¤¦¤À¤±¤Ç¤Ê¤¯¡¢±Ô³Ñ¤â·ù¤¦¤è¤¦¤Ç¤¹¡×¤È¥³¥á¥ó¥È¤·¤Æ¤¤¤Þ¤¹¡£