〜最近のレコメンドについてアイジェントECの中の人に聞いてみた

最近のレコメンドについてアイジェントECの中の人に聞いてみた


今日は、最近話題のレコメンドエンジンの動きについて、レコメンドサービスを提供している会社の中の人に聞いた話をまとめてみます。

話を聞いたのは、「アイジェントEC」というレコメンドエンジンを提供しているシルバーエッグ・テクノロジーさん。

念のために解説しておくと、レコメンドエンジンとは、Webサイトなどで、「この商品もいかがですか?」と薦める機能を実現する仕組み。アマゾンの「この商品を買った人はこんな商品も」というやつですね。概念でいうと、「ユーザーそれぞれが見たいと思うコンテンツや買いたいと思う商品を予測して提示する仕組み」です。

ただ、レコメンドエンジンも、オススメ内容を探る仕組みが

・コンテンツの関連性ベース
・ユーザーの行動パターンベース
・事前に登録したユーザーの属性ベース

など何種類かあります。

シルバーエッグさんは、これまで「アイジェントASP」として提供してきたレコメンドエンジンを機能強化して、11月16日から「アイジェントEC」と名前も新たにしてサービス提供を開始しているということで、今回、レコメンドについていろいろと聞いてみました。

シルバーエッグさんの技術は、主にユーザーの行動パターンベースのレコメンド。アイジェントASPの時代にも、EC向けに「同じような商品を買って(見て)いる他の人が買っていて、その人は買っていない商品」を薦める、ユーザーの行動パターンベースのレコメンドを実現していました。そのときには、

・同時購買相関(一緒に買ったデータ)
・プライア相関(過去に買ったデータ)
・ブラウズオーダー相関(見たデータと買ったデータ)

のなかから、ページごとに最適な相関データを選び、リアルタイムで相関を計算していたとのこと。いろいろあるんですね。で、今回のパワーアップで、さらに、


続きはこちら